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The  purpose  of  this  review  is  to  provide  a comprehensive  overview  of  mathematical  procedures  that
can be  used  to  describe  the  release  of  drugs  from  inert  matrix  systems.  The  review  focuses  on  general
principles  rather  than  particular  applications.  The  inherent  multiscale  nature  of  the drug-release  process
is pointed  out  and  multiscale  modelling  is  exemplified  for  inert  porous  matrices.  Although  effects  of  stag-
nant  layers  and  finite  volumes  of  release  media  are  briefly  discussed,  the  systematic  analysis  is  restricted
to systems  under  sink  conditions.  When  the  initial  drug  loading  exceeds  the  drug  solubility  in  the matrix,
eywords:
rug release
athematical modelling
atrix systems
onolithic systems

Higuchi-type  moving-boundary  descriptions  continue  to be  highly  valuable  for obtaining  approximate
analytical  solutions,  especially  when  coupled  with  integral  balance  methods.  Continuous-field  descrip-
tions  have  decisive  advantages  when  numerical  solutions  are  sought.  This  is  because  the  mathematical
formulation  reduces  to  a  diffusion  equation  with  a nonlinear  source  term,  valid  over  the  entire  matrix
domain.  Solutions  can  thus  be  effortlessly  determined  for  arbitrary  geometries  using  standard  numerical
oving-boundary descriptions
ontinuous-field descriptions

packages.
© 2010 Elsevier B.V. All rights reserved.
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. Introduction

The timely and reproducible release of active pharmaceutical
ngredients from delivery vehicles of various kinds is, for obvi-
us reasons, of paramount importance for an efficient and safe
harmacological treatment of disease. Mathematical modelling
lays an important role in this context, providing tools to analyse
xperimental release data and to elucidate the manner in which for-
ulation and design factors affect the release profile. It is therefore

atural that much effort has been devoted to developing models for
he drug-release process (see, e.g., Fan and Singh, 1989; Siepmann
nd Peppas, 2001; Siepmann and Göpferich, 2001; Lin and Metters,
006; Siepmann and Siepmann, 2008).

Such models can be grouped according to various criteria. It is
ommon to distinguish between empirical/semi-empirical mod-
ls, on the one hand, and mechanistic models, on the other, as
as been discussed by Siepmann and Siepmann (2008).  Whereas
mpirical/semi-empirical models aim for a description of release
rofiles without necessarily taking the underlying processes into
ccount, the aspiration of mechanistic models is to explain the
elease on the basis of the physical and chemical processes that
ontrol the release rate (such as diffusion and dissolution). One of
he most commonly used semi-empirical models of drug release is
he Korsmeyer–Peppas power-law (Korsmeyer et al., 1983; Peppas,
985). The archetypical mechanistic model of drug release is the
iguchi (1961) square root of time law. As an immediate conse-
uence of the extent to which underlying mechanisms are taken

nto account, empirical/semi-empirical models can be successfully
sed to summarise and evaluate experimental release data, but
echanistic models are needed to relate these observations to

haracteristics of the delivery vehicles and to predict release pro-
les during design of new formulations.

Depending on the methods used to obtain the solution (i.e.,
he release rate/profile), models can also be broadly classified as
eing either analytical or numerical. For analytical models, solu-
ions can be determined by symbolic calculation and expressed in
he form of equations, such as the one derived by Higuchi (1961).  In
ome situations, exact analytical solutions can be found, but often
pproximations have to be made. In any case, analytical solutions
re highly valuable because they symbolically relate a response
ariable (such as the amount of released drug) to one or more
ndependent variables (time in this case) and one or more param-
ters (such as the diffusion coefficient, the drug solubility and
he initial drug loading). Thus, an analytical drug-release model
ot only immediately provides the kinetics of the release (e.g.,
mount of released drug proportional to the square root of time)
ut also explicitly shows how the release rate depends on various
arameters (e.g., proportional to the square root of the diffusion
oefficient).

Many problems of practical interest are too complicated to be
olved by analytical methods. This is often due to nonlinearities
nd/or complex geometries. In these cases, one has to resort to
umerical analysis or simulation, where, given a certain set of
arameter values, the corresponding solution is determined by
umerical calculation. A numerical solution is inherently approx-

mate, but may  nevertheless be determined with high accuracy.
or numerical methods, each set of parameter values requires a
ew solution to be determined, which makes them more difficult
o apply. Having said that, it should be emphasised that numeri-
al methods are highly valuable, since they considerably expand
he range of problems that are amenable to being solved. The two

ost commonly used numerical methods are the finite-difference

FD) and the finite-element (FE) method; see, e.g., the textbooks
y LeVeque (2007) and Hughes (2000).  In principle, the FD method

s more intuitive and easy to apply, but the FE method is better
uited for complex geometries. Today, numerical analysis is often
harmaceutics 418 (2011) 88– 99 89

carried out by commercially available software packages, in which
case either method can be applied without much effort.

As pointed out by Siepmann and Siepmann (2008),  no drug-
release model can be expected to be universally valid, and models
could therefore be classified on the basis of the systems to which
they apply. This is particularly true for mechanistic models, because
the rate-controlling mechanisms vary between systems. Matrix (or
monolithic) systems of the type considered in this review are typ-
ically diffusion-controlled (Fan and Singh, 1989), but dissolution
kinetics can sometimes affect the release profile in its early stages
(Peppas, 1983; Frenning et al., 2005).

The purpose of this review is to provide a comprehensive
overview of mathematical procedures that can be used to describe
the release of drugs from inert matrix systems, focusing on gen-
eral principles rather than particular applications. To put this work
into context, a brief overview of drug delivery systems and release
mechanisms is provided in Section 2. Drug release processes tend to
have a multiscale character, and multiscale modelling may  there-
fore provide additional insights, as elaborated upon in Section 3.
Factors that affect the release from matrix systems, such as initial
drug loading/solubility, boundary conditions and matrix geometry,
are discussed in Section 4. The initial drug loading – relative to the
drug solubility in the matrix – is known to have a decisive influ-
ence on the release. When no solubility or dissolution limitations
exist, the drug release can be inferred from solutions to the diffusion
equation, as described in Section 5. As discussed in Section 6, the
analysis becomes more challenging when the initial drug loading
exceeds the solubility, in which case the main solution procedures
rely on moving-boundary and continuous-field descriptions. The
modifications necessary for porous matrices are dealt with in Sec-
tion 7, including effective diffusion coefficients, percolation effects
and pore-network modelling. Conclusions are drawn in Section 8.

2. Drug delivery systems and release mechanisms

Drug delivery systems are often classified on the basis of their
design or their rate-controlling release mechanism (such as dif-
fusion, erosion/chemical reactions, swelling and osmosis) (Langer,
1980; Langer and Peppas, 1983; Fan and Singh, 1989). This review
focuses on diffusion-controlled release systems, that are split into
two  types; reservoir system and matrix or monolithic systems
(Langer, 1980; Wen  and Park, 2010). The reservoir system utilises
a membrane that serves as the main diffusion barrier, enclosing a
core containing the drug. The drug loading is typically high enough
to ensure that a saturated solution is maintained within the core
for an extended period. Such a design ideally leads to a constant
release rate (zero-order release) as long as solid drug is present
in the core and no inhibitory buildup of drug takes place in the
dissolution medium. Under these circumstances, the release rate
is proportional to the device area but otherwise independent of
its geometry (Siepmann and Siepmann, 2008). Although reservoir
systems have the benefit of a zero-order release profile, they run
the risk of dose dumping caused by membrane rupture. This is par-
ticularly unsuitable for highly potent drugs (Forsgren et al., 2010).
Reservoir systems are similar in design to osmotic pumping sys-
tems, where the dissolved drug and constituent materials induce
an osmotic pressure within the core. This pressure results in out-
ward convection of dissolved drug, through holes in the coating
(Theeuwes, 1975). Although diffusion is generally considered to be
the dominating release mechanism in reservoir systems, osmotic
pumping can also influence the release rate (Borgquist et al., 2002).

In the matrix or monolithic system, drug is distributed through

a polymer that serves as the diffusion barrier (Wen  and Park,
2010). The polymer matrix can either be nonporous/homogeneous
or porous/granular. In the former, the matrix can be considered to
consist of one phase through which the drug diffuses. In the lat-
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er, diffusion is restricted to pores in an otherwise impermeable
aterial. The drug can be dissolved in the matrix or be dispersed in

olid form. Whereas diffusion is the major rate-controlling mech-
nism for inert matrices of the type considered in this review,
atrix swelling (Colombo, 1993; Colombo et al., 1995) and erosion

Göpferich, 1996a,b) can have significant impacts on the release
ate for other matrix materials. Siepmann and Peppas (2001) have
eviewed models of swelling matrices, focusing on hydroxypropyl
ethylcellulose (HPMC). A review of models applicable to eroding
atrices has been presented by Siepmann and Göpferich (2001).
lthough matrix systems run less risk of dose dumping than reser-
oir systems, burst release is not uncommon, as discussed by Huang
nd Brazel (2001).

.  Drug release as a multiscale process

During recent years, multiscale modelling and simulation has
ttracted considerable interest in various fields of science (see, e.g.,
oddard et al., 2001; E and Engquist, 2003; Deen et al., 2004). The
nderlying idea is to link processes occurring on different spatial
or temporal) scales – typically in a sequential manner – to obtain

 mechanistic description of complex phenomena. It is instructive
o look at drug release from this perspective, and we will use inert
orous matrices as an example. For simplicity we will assume that
ll drug is dissolved in the liquid present within the pores.

As illustrated in Fig. 1, drug release can in this case be described
s the sum effect of processes occurring on four different length
cales. Firstly, it is well known that diffusion is driven by the ther-
al  motion of individual molecules on the molecular scale (micro

cale). Secondly, the molecular processes will result in certain drug
oncentrations within the pore system of the matrix (meso scale).
hirdly, on scales significantly larger than the average pore size
macro scale), it is usually possible to describe diffusion using effec-
ive diffusion coefficients. Fourthly, the macro scale diffusion will
esult in an overall release profile for the system as a whole (global
cale).

In this context, mathematical modelling can be described as a

ool that enables scale transitions to be performed. Assuming that
ll significant pores are large enough to exclude any restrictions
osed by individual molecular behaviour (Sahimi, 1992), the micro
o meso transition can be immediately accomplished by introduc-

ig. 1. Drug release as a multiscale process (exemplified by an inert porous matrix). The 

n  the micro scale. Diffusion is considered to occur in pores on the meso scale and in an e
he  global scale.
harmaceutics 418 (2011) 88– 99

ing the drug concentration C in the liquid present within the pores.
Under this assumption, the flux J (i.e., the mass per unit time and
area) in a certain spatial direction x can be determined using Ficks’s
first law (see, e.g., Cussler, 1997, Ch. 2),

J = −D
∂C

∂x
, (1)

where D is the diffusion coefficient of the drug in the liquid present
within the pores. The meso to macro transition is more challenging,
however, pore-network modelling can accurately predict effec-
tive properties based on the pore structure (pore size distribution,
connectivity and porosity) (Burganos and Sotirchos, 1987; Sahimi,
1992; Hollewand and Gladden, 1992; Sahimi, 1995). The outcome
of such an analysis typically is an effective diffusion coefficient Deff
(or D′, see Section 7), which can be used instead of D to describe
diffusion in the matrix as a whole. The macro to global transition
– from ‘effective’ matrix properties to the release profile – is com-
monly studied in drug-release modelling, and is also the main focus
of this review.

4. Factors affecting drug release for matrix systems

A large number of factors influence the rate of drug release from
inert matrix systems. This review will discuss some of them in order
to provide a classification of mathematical models.

4.1. Initial drug loading, solubility and dissolution rate

The initial drug loading, A0, is usually defined as the ratio
between the amount of drug present in the matrix and the matrix
volume (assuming a homogeneous distribution of drug on the
macro scale). The magnitude of A0, relative to the drug solubility
in the matrix, Cs, plays a decisive role in determining the release
kinetics. If A0 < Cs, and dissolution is not rate limiting, all drug can
be considered to be dissolved at the initial state. Hence the release
kinetics can be inferred from solutions of the homogeneous diffu-
sion equation (Fick’s second law; see Section 5).
The situation becomes considerably more difficult when A0 > Cs.
Since all drug cannot be present in dissolved form in the initial state,
it makes sense to subdivide the total amount A0 into dissolved (C0)
and solid (S0) parts, so that A0 = C0 + S0. Typically, C0 = Cs, such that

thermal energy kBT results in certain trajectories xi(t) of individual drug molecules
ffective medium on the macro scale. This produces an overall drug release M(t) on
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Fig. 2. Effects of boundary conditions on drug release, exemplified by reservoir sys-
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0 = A0 − Cs. As is well-known, this case was considered by Higuchi
1961),  who noted that the matrix can be subdivided into two  zones,
ith a moving boundary in between (provided that dissolution is
ot rate-limiting). No drug transport is possible in the core where
olid drug is present, since there is no concentration gradient in
his region. No solid drug exists in the depleted zon, adjacent to the
oundary, resulting in a concentration gradient and drug transport.
s a consequence of this transport, the boundary between the two
ones will move inwards with time, leading to a so-called moving-
oundary description (Crank, 1984) of drug release (see Section
.1).

Reducing the sharpness of this boundary, and considering both
he dissolved and the solid drug concentrations as continuously
arying fields, is desirable when a numerical solution is sought, and
lso provides a natural framework for systems with dissolution-
ate limitations. Such continuous-field descriptions are discussed
n Section 6.2.

A  more general situation is that the matrix initially contains
 nonuniform amount of drug. Lee (1984) used special prepara-
ion procedures to achieve a sigmoidal initial drug concentration
espite that the initial drug loading nowhere exceeded the drug
olubility in the matrix. The sigmoidal profile was experimentally
nd theoretically found to produce a release rate that varied con-
iderably less over time than the one for a uniformly loaded matrix
Lee, 1984, 1986). Alternatively, a nonuniform initial drug concen-
ration may  result from unevenly dispersed solid drug. Although
ot elaborated upon in this review, a nonuniform initial amount of
olid drug may  be accommodated for both in the moving-boundary
nd in the continuous-field descriptions.

.2. Boundary conditions

.2.1. The sink condition
The most straightforward – and also often used – assumption

s to regard the drug concentration at the boundary of the matrix
or delivery vehicle in the general case) to be zero (Siepmann and
iepmann, 2008). Such boundary conditions are often referred to
s ‘sink conditions’. The sink condition is a mathematical idealisa-
ion, but often adequately approximates real physical systems. In a
trict mathematical sense, the sink condition cannot be valid unless
elease occurs into a perfectly mixed dissolution medium of infinite
olume. In reality, a nonzero concentration always develops with
ime, unless special precautions are taken, such as a release vessel
ith a flow-through design.

.2.2. Stagnant layers and external mass-transfer resistances
When a delivery vehicle is contained in a dissolution medium,

ts periphery is surrounded by a stagnant layer of liquid. The thick-
ess of this layer is inversely proportional to the degree and rate at
hich the dissolution medium is stirred. Such stagnant layers have

een extensively discussed in the literature, particularly in relation
o dissolution rate. The modifications of the Noyes and Whitney
1897) equation proposed by Nernst (1904) and Brunner (1904),
elated the dissolution rate constant to the diffusion coefficient
ia a stagnant layer. The influence of hydrodynamic conditions on
he stagnant-layer thickness has been discussed by Grijseels et al.
1981).

Although this review is largely focussed on matrix systems, we
ill use reservoir systems to discuss the main effects of stagnant

ayers on the release kinetics. Let us consider a reservoir system
here the diffusion barrier is a membrane of thickness Lm with
iffusion coefficient Dm (Fig. 2a). The analysis is somewhat com-

licated by the fact that a partition occurs at the interfaces. If a
aturated solution exists in the reservoir, the drug concentration in
he membrane at the membrane/reservoir interface will be Km/rCs,
here Km/r is the membrane/reservoir partition coefficient. Under
tems: (a) sink conditions, (b) stagnant layers and (c) dissolution media of finite
volumes.

sink conditions, the outward flux of drug, J0, is readily determined
from Fick’s first law (1) as

J0 = DmKm/rCs

Lm
. (2)

Hence a constant release rate is obtained (zero-order release).
When a stagnant layer exists, the concentration will no longer

be zero at the interface between the membrane and the external
medium (Fig. 2b). Again one needs to include a partition coefficient,
so that the drug concentration in the membrane at the interface

can be written as Km/eCe, where Km/e is the membrane/external
medium partition coefficient, and Ce is the drug concentration
in the external medium at the interface. Assuming steady state,



9 al of P

a
e

J

w

J

N
s
f

J

A
e
z

t
a
2
f
d
c
v
c
o
t
a
1

4

w
s
v
n
o
t
b
i
e
b
o

w

�

i

M

i
n
(

M

H
r
i
A
m

2 G. Frenning / International Journ

nd using Fick’s first law (1),  the flux Jm across the membrane is
xpressed as

m = Dm(Km/rCs − Km/eCe)
Lm

(3)

hereas the flux Je across the stagnant layer becomes

e = DeCe

Le
. (4)

o accumulation of drug can occur at the interface during steady
tate, implying that these two fluxes must be equal. Solving Eq. (3)
or Ce and substituting the result in Eq. (4),  one finds that

m = Je = J0
1 + (DmKm/eLe)/(DeLm)

.  (5)

 stagnant layer reduces the release rate, but in this particular
xample does not affect the release kinetics that continue to be
ero order.

A stagnant layer is often said to correspond to an external mass-
ransfer resistance, because mass transfer across interfaces is often
nalysed in terms of mass-transfer coefficients (Cussler, 1997, pp.
11–244), in this case Tm = Dm/Lm for the membrane and Te = De/Le

or the stagnant layer. The overall mass transfer coefficient T is
efined in such a manner that the total flux J = TCs. A mass transfer
oefficient is analogous to an electrical conductance (the reciprocal
alue of the corresponding resistance) and the overall mass transfer
oefficient can be calculated in a similar manner to the conductance
f two electrical resistors in series (with partition coefficients being
aken into account). If Km/r and Km/e both equal unity, the over-
ll mass transfer coefficient can be determined from the equation
/T  = 1/Tm + 1/Te.

.2.3. Dissolution media of finite volumes
Let us now consider release into a finite medium of volume Ve

hile disregarding boundary-layer effects, using the same reservoir
ystem as mentioned above (Fig. 2c). In this case Eq. (3) remains
alid, but the external concentration Ce will increase with time and
eeds to be determined as part of the solution procedure. Problems
f this type, with a ‘free’ boundary condition, are often referred
o as free boundary value problems (Crank, 1984). If we  let M(t)
e the amount of drug in the external medium, we can express

ts concentration as Ce(t) = M(t)/Ve. The time rate of change of M(t)
quals AeJm, where Ae is the total external surface area and Jm, as
efore, is the flux across the membrane. Hence we are led to a first-
rder differential equation, of the form

dM

dt
+ �M = �M∞, (6)

here

 = AeDmKm/e

LmVe
(7)

s a rate constant and

∞ = Km/rCsVe

Km/e
(8)

s the asymptotic amount of drug released. Provided that the exter-
al media contains no drug initially, the solution can be stated as
Flynn et al., 1974)

(t) = M∞(1 − e−�t). (9)

ence, the finite external volume (Ve) has caused a change in the

elease kinetics, from zero-order to first-order. Since initially, there
s no drug in the external medium, the initial release rate equals
eJ0. As soon as the drug concentration builds up in the external
edium, the release rate reduces, until an equilibrium situation is
harmaceutics 418 (2011) 88– 99

obtained. Similar first-order kinetics are expected under sink con-
ditions, where, due to the absence of solid drug in the core, the
saturated concentration can no longer be maintained (Flynn et al.,
1974).

4.3. Matrix geometry

In an ideal case, geometry affects drug release from matrix sys-
tems but not from reservoir systems (Siepmann and Siepmann,
2008). For the planar geometry, drug release truly is one-
dimensional, simplifying the mathematical analysis. This geometry
has therefore been the bases for many investigations (Higuchi,
1961; Roseman and Higuchi, 1970; Tojo, 1985; Paul and
McSpadden, 1976; Lee, 1980; Bunge, 1998; Zhou and Wu,  2002;
Frenning, 2003, among others). Other geometries that permit rel-
atively straightforward analyses to be performed are the sphere
(Higuchi, 1963; Lee, 1980; Frenning, 2004) and the cylinder with
drug release occurring in the radial direction only (Roseman and
Higuchi, 1970; Siegel, 2000; Huang et al., 2000). This is because the
spherical and cylindrical symmetry makes it sufficient to retain one
spatial coordinate in the analysis.

For general cylindrical systems, drug transport in both the
axial and radial directions needs to be considered. Such an anal-
ysis has been performed by Fu et al. (1976) when no solubility
limitations exist (A0 < Cs). However, when there is an excess of
drug (A0 > Cs), the analytical treatment becomes considerably more
involved. Cobby et al. (1974a,b) proposed a generic cubic equation
in the square root of time for the release from matrix tablets. Zhou
et al. (2005) have presented a pseudo-steady state analysis of drug
release from cylindrical matrices containing an excess of solid drug
(further elaborated upon by Frenning et al., 2005).

More detailed analyses typically rely on numerical methods,
especially when additional factors are taken into account or when
complex geometries are studied. The FD method has for example,
been used in a series of papers devoted to the release of drug from
swelling HPMC matrices by Siepmann and co-workers (Siepmann
et al., 1999a,b, 2002; Siepmann and Peppas, 2000). The FE method
has been used to investigate complex geometries (Zhou and Wu,
1997), inhomogeneous drug loadings and concentration/time-
dependent diffusion coefficients (Wu and Zhou, 1998). The FE
method has also been applied to investigate the effects of stagnant
layers and finite volumes of release media (Wu  and Zhou, 1999) and
the implications of slow drug dissolution (Frenning et al., 2005).

5. Matrix systems: drug loading below solubility

In the absence of any solubility or dissolution limitations, the
release of drug from an inert matrix system can be determined
by solving the homogeneous diffusion equation (Fick’s second
law). When diffusion is unidirectional, the equation takes the form
(Crank, 1979; Cussler, 1997)

∂C

∂t
= D

∂2C

∂x2
, (10)

where the diffusion coefficient D is assumed to be independent of
concentration, and the drug concentration C(x, t) is a function of the
spatial coordinate x and time t. The diffusion equation is a partial
differential equation (PDE), second-order in space and first-order
in time, identical in form to the heat-conduction equation. A large
number of solutions exist in the literature, for various geometries,
initial and boundary conditions, and have been conveniently sum-

marised in the textbooks by Crank (1979) and Carslaw and Jaeger
(1986). Such solutions tend to be rather complex, and often take
the form of an infinite series, as obtained by operational methods,
in particular Laplace transforms (Carslaw and Jaeger, 1948).
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One exception to this rule, which is of relevance in drug release,
s the half-infinite system, occupying the spatial region x > 0, with
onstant surface concentration (usually zero). Assuming that the
atrix initially contains a uniform amount A0 of dissolved drug,

he initial condition can be stated as

(x, t) = A0 for x ≥ 0 and t = 0. (11)

hen sink conditions are enforced on the boundary at x = 0, one
oundary condition is

(x, t) = 0 for x = 0 and t > 0. (12)

or a semi-infinite system, no change in concentration will occur
ufficiently far away from the boundary, regardless of time. Hence
ne can postulate a boundary condition at infinity as

(x, t) = A0 when x → ∞ and t > 0. (13)

or the half-infinite system, the Boltzmann transformation (Crank,
979)

 = x

2
√

Dt
,  (14)

educes the PDE (10) to an ordinary differential equation (ODE) in
he reduced variable �. This transformation is consistent with the
nitial and boundary data, because the initial condition (11) and the
oundary condition (13) can be translated into a single condition
t � = ∞ (the boundary at x = 0 corresponds to � = 0, at which point
he sink condition (12) applies). The resulting ODE takes the form

′′ + 2�C ′ = 0 (15)

here the prime indicates differentiation with respect to �. Not-
ng that e�2

is an integrating factor, Eq. (15) can be immediately
ntegrated once, to show that C ′ is proportional to e−�2

. A second
ntegration produces the concentration profile,

(�) = A0 erf(�), (16)

here

rf(�) = 2√
�

∫ �

0

e−z2
dz (17)

s the error function (Abramowitz and Stegun, 1965) [the factor
/
√

� is included in the definition so that erf(�) approaches unity
or large �]. The concentration profile (16) leads to the classical
ormula,

(t) = 2A0

√
Dt

�
, (18)

or the amount of drug released after time t per unit interface area.
ence, the amount of released drug increases with the square root
f time.

. Matrix systems: drug loading above solubility

Drug release from matrix systems can generally be considered
s diffusion-controlled, even when an excess of drug is present in
he matrix (A0 > Cs). However, the restrictions imposed by solubility
ause a reduction in the concentration gradient, whereby result-
ng in slower drug release. The classical analysis of this situation is
ased on moving-boundary descriptions.

.1. Moving-boundary descriptions
.1.1. Problem formulation
Let us consider the same half-infinite system as was mentioned

bove, with the assumption that the initial drug loading A0 > Cs. Pro-
ided that drug dissolution is not rate limiting, the matrix can be
harmaceutics 418 (2011) 88– 99 93

divided into an outer depleted region and an inner region contain-
ing solid drug. These two regions are separated by a boundary that
moves inwards with time (see Section 4.1)  (Higuchi, 1961). The
spatial location of the moving boundary is denoted by x*(t). The
homogeneous diffusion equation (10) continues to be valid in the
depleted region, and the mathematical statement of the problem
is as follows:

∂C

∂t
= D

∂2C

∂x2
for 0 < x < x∗(t). (19)

The sink condition (12) also applies in this case, but a new boundary
condition is needed at x = x*(t), where

C(x, t) = Cs for x = x∗(t) and t > 0. (20)

The motion of the boundary requires an additional condition for its
determination. Thus, local mass conservation at the moving bound-
ary requires that:

D
∂C

∂x
= S0

dx∗
dt

for x = x∗(t) and t > 0. (21)

The above condition was first given in this form by Paul and
McSpadden (1976).  It is often referred to as a Stefan condition
(Crank, 1984), in honour of Stefan (1891),  who investigated this
problem in relation to melting ice.

6.1.2. Exact analysis
It turns out that an exact analysis of the moving-boundary prob-

lem, formulated in the preceding section, is possible in terms of the
reduced variable � defined by Eq. (14) (Paul and McSpadden, 1976).
Hence, it immediately follows that the spatial location of the mov-
ing boundary increases with the square root of time, x∗ = 2�∗

√
Dt,

where �* is the location of the boundary in the reduced description
(when � rather than x and t is used as independent variable). Fur-
thermore, the concentration profile becomes (Paul and McSpadden,
1976)

C(�) = Cs
erf(�)
erf(�∗)

, (22)

and the amount of released drug per unit interface area is

M(t) = 2Cs

erf(�∗)

√
Dt

�
. (23)

Eqs. (22) and (23) are identical in form to Eqs. (16) and (18), but as
a consequence of the restrictions imposed by solubility, the coef-
ficient A0 is replaced by Cs/erf(�∗) in the former. However, these
formulae are not useful unless the value of �* is known, and this
requires the solution to be determined for the equation

√
��∗ e�2∗ erf(�∗) = Cs

S0
= Ste, (24)

where the second equality defines the Stefan number (Ste). In gen-
eral, this equation needs to be solved numerically.

6.1.3. Approximate analysis
The planar system is exceptional in the sense that an exact solu-

tion is obtainable, as outlined in the preceding section. For other
geometries, one has to rely on approximate analytical or numerical
methods. The two  most commonly used analytical approxima-
tion methods are; the pseudo-steady state approximation, used by
Higuchi (1961),  and the (heat) integral balance method, originally
devised by Goodman (1958) and refined by Volkov and Li-Orlov

(1970).

Provided that the initial drug loading A0 considerably exceeds
the solubility Cs (implying a small Stefan number Ste), the move-
ment of the boundary will be sufficiently slow, as to allow the time
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erivative to be neglected in Eq. (19), so that ∂2C/∂ x2 ≈ 0.. The con-
entration C will therefore increase linearly from 0 at the origin
o Cs at the moving boundary, so that the gradient ∂C/∂ x ≈ Cs/x∗.

hen this expression is inserted in the Stefan condition (21), an
DE in x*(t) is obtained. This ODE can be solved by separation of
ariables, to produce the result

∗ ≈
√

2DCst

S0
. (25)

f desired, this expression can be restated in terms of the reduced
ront position (�*) and the Stefan number (Ste) as �∗ ≈

√
Ste/2.

aving obtained the front position, the release rate dM/dt per unit
xposed area can be immediately evaluated as D ∂ C/∂ x ≈ DCs/x∗
nd hence the amount of released drug becomes

(t) =
√

2CsS0Dt. (26)

his expression was previously derived by Paul and McSpadden
1976).  As noted by these authors, the classical Higuchi (1961) for-

ula is recovered if A0 − Cs/2 is substituted for S0 = A0 − Cs. This
iscrepancy originates from the fact that the Stefan condition (21)
xpresses mass conservation at the moving boundary, whereas,
iguchi (1961) considered mass conservation at the matrix bound-
ry. Since both expressions were derived under the assumption that
0 	 Cs, this difference is insignificant for practical applications.

More accurate analytical results can be obtained using the (heat)
ntegral balance method, in particular in its refined version, as was
erformed by Lee (1980) and later by Lin (2008).  The underlying

dea is to integrate the diffusion equation (19) once (for the orig-
nal method by Goodman, 1958) or twice (for the refined method
roposed by Volkov and Li-Orlov, 1970) with respect to space, in
rder to obtain an auxiliary balance equation. Next, a suitable func-
ional form containing unknown parameters is postulated for the
oncentration profile in the depleted region. The unknown parame-
ers are finally determined so that the concentration profile satisfies
he boundary conditions and the auxiliary balance equation. With

 carefully selected functional form, it is possible to achieve highly
ccurate results. Investigating a related problem, Sadoun et al.
2006) derived the expression

∗ ≈ 1
2

√√
(Ste + 6)2 + 24 Ste − (Ste + 6), (27)

hat gives the moving-boundary position with an error not exceed-
ng 1% as long as Ste < 100 (Sadoun et al., 2006). The maximal error
n the amount of released drug will be considerably smaller, how-
ver, because a Stefan number of 100 implies that initially more
han 99% of the drug is present in dissolved form. Hence, the loca-
ion of the moving boundary will have a marginal effect on the
verall release profile. By applying the value of �* provided by Eq.
27) in Eq. (23), a highly accurate formula for the amount of released
rug is obtained.

The refined integral balance method has also been used by Lee
1980) to derive approximate analytical expressions for the amount
f drug released from planar and spherical matrices into exter-
al media of finite volumes. This analysis was however restricted
o the case of completely dissolved drug. In more complicated
ituations, both the pseudo-steady-state approximation and the
ntegral-balance method may  be applied in different regions of the
ame system. Such an approach was recently used in an approxi-

ate analytical analysis of the release of catanionic mixtures from

els (Frenning et al., in press), where the original model (Bramer
t al., 2009) was based on regular solution theory (Holland and
ubingh, 1983).
harmaceutics 418 (2011) 88– 99

6.2. Continuous-field descriptions

An alternative description, originally proposed by Ayres and
Lindstrom (1977),  utilises a continuously varying ‘concentration’
S(x, t) of solid drug, defined so that S(x, t) is the amount of solid
drug present per volume unit matrix at spatial location x and time
t. Dissolution acts as a source of dissolved drug, and the diffusion
equation is modified to read

∂C

∂t
= D

∂2C

∂x2
− ∂S

∂t
. (28)

The negative sign on the right-hand-side of the equation is needed,
because a decrease in S corresponds to a source for C. A major
advantage of this continuous-field description is that the inhomo-
geneous diffusion equation (28) is valid everywhere in the matrix,
regardless of whether solid drug is present or not. However, an
additional equation is needed to determine the variation in solid
drug concentration. This equation can be written as

∂S

∂t
= −kF(S)(Cs − C) (29)

where F(S) is a function of the solid drug concentration, analogous
to the area available for dissolution in the Noyes–Whitney equation
(Noyes and Whitney, 1897). Also, when the dissolution rate is con-
sidered not to be rate-limiting, the factor F(S) needs to be included
on the right-hand-side of Eq. (29), to ensure that S always remains
non-negative. If dissolution-rate effects are disregarded, one can
use the unit step (Heaviside) function:

F(S) =
(

1 if S ≥ 0,
0 if S < 0.

(30)

A more general model of this type has been considered by Lee
et al. (1998).  Related solution procedures, alternatively referred
to as phase-field models (Caginalp, 1986, 1989) or level-set meth-
ods (Chen et al., 1997; Osher and Fedkiw, 2001), have attracted
considerable interest in numerical analysis.

Although the non-linearity introduced by F(S) generally pre-
cludes an exact analytical solution, a simplification can be made by
introducing a new dependent variable U(x, t), defined by (Delborghi
et al., 1976; Frenning et al., 2005)

U(x, t) =
∫ t

0

C(x, t′) dt′, (31)

where t′ is a dummy  variable. As long as S is positive, so that F(S)
equals unity, integration of Eq. (29) shows that S − S0 = − k(Cst − U);
hence we can write

S =
(

S0 + k(U − Cst) if S0 + k(U − Cst) ≥ 0,
0 if S0 + k(U − Cst) < 0.

(32)

Integrating Eq. (28) with respect to time (from 0 to t), one finds that

∂U

∂t
= D

∂2U

∂x2
+ G (33)

where the source term

G = C0 + S0 − S. (34)

Hence, the mathematical formulation reduces to a standard dif-
fusion equation with a non-linear source term. The numerical
solution of such equations has been extensively studied and can
for instance be obtained via the FD or FE methods (LeVeque,
2007; Hughes, 2000). A number of commercially available software

packages allow the solution for arbitrary geometry to be readily
obtained. Numerical solution provides U (and hence C = ∂ U/∂ t) as a
function of the space and time variables. The concentration of solid
drug, S, can be calculated via Eq. (32). Finally, the total amount of
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Fig. 3. Concentration profiles of dissolved (top) and solid drug (bottom) obtained by
continuous-field (solid lines) and moving-boundary descriptions (open symbols).
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where S0 is the initial concentration of solid drug. A function of this
rug that remains in the matrix is in the general case obtained by
ntegrating C + S over the spatial domain occupied by the matrix. For
he planar system studied here, one can alternatively note that the

agnitude of the outward flux is given by D( ∂ C/∂ x)x=0. As a con-
equence of Eq. (31), the amount of drug released per unit exposed
rea is thus obtained as D( ∂ U/∂ x)x=0.

To illustrate this procedure, we consider a system with a mod-
rate excess of solid drug (A0 = 2Cs, so that S0 = Cs and Ste = 1). The
iffusion coefficient is kept fixed at 1 × 10−6 cm2/s and calcula-
ions are performed for four different values of the dissolution rate
onstant k (1 × 10−4, 1 × 10−3, 1 × 10−2 and 1 × 10−1 s−1). Concen-
ration profiles obtained from a numerical solution of Eq. (33) are
ndicated by solid lines in Fig. 3 (the figure shows the situation
fter 1 × 104 s, i.e., slightly less than 3 h). As a comparison, the result
btained from a moving-boundary description, utilising the highly
ccurate value of �* provided by Eq. (27) in Eq. (22), is indicated
y open symbols. As expected, the numerical solution approaches
he moving-boundary result when k increases. For the largest value
f k considered, the concentration profile of the dissolved drug is
lmost identical with the one obtained from the moving-boundary
nalysis. However, for the solid drug, a transition zone can be seen,
ith a finite gradient in drug concentration.

The complication that precludes an analytical solution of Eqs.
28) and (29), stems from the nonlinearity introduced by the func-
ion F(S). However, as long as solid drug exists everywhere in the

atrix (up to a certain time ts), F(S) equals unity, and a linear equa-
ion system is obtained that can be solved in closed form. Gurny

t al. (1982) have demonstrated, building on results by Danckwerts
1950), that the amount of drug released per unit exposed area can
Fig. 4. Release profiles obtained by continuous-field (solid lines) and moving-
boundary descriptions (open symbols). The dashed lines show the predictions of
Eq. (35) (valid for short times).

be expressed as

M = Cs

√
D

k

[(
kt + 1

2

)
erf
(√

kt
)

+
√

kt

�
e−kt

]
for t < ts.

(35)

It is intuitively clear that dissolution will proceed most rapidly at
the boundary, where C and U are both zero under sink conditions.
By inspection of Eq. (32) it is apparent that

ts = S0

kCs
. (36)

Similar conditions must be fulfilled in order for related dissolution-
controlled models to be valid, such as the one proposed by Peppas
(1983). It is interesting to note that Eq. (35) predicts zero-order
release in a limited time window for certain parameter values. The
requirements for this are; that the product kt is sufficiently large
that the exponential in Eq. (35) becomes small and the error func-
tion approaches unity, and at the same time kt is sufficiently small
allowing the equation to remain valid. In light of Eq. (36), such
a situation would occur, if there is a considerable excess of solid
drug (S0 	 Cs). However, once a depleted region forms (at time ts),
a crossover occurs to a square root of time behaviour.

The drug release corresponding to the concentration profiles
displayed in Fig. 3 is provided in Fig. 4, which also includes the
predictions of Eq. (35) (dotted lines labelled as ‘short term’). Again
it is evident that the numerical solution approaches the moving-
boundary result when k increases. For this drug loading, Eq. (35) is
valid up to ts = 1 × 10−4 s for the lowest value of k, and in this case, a
time window with an approximate zero-order release is observed
(between 5 × 103 and 1 × 104 s).

However, if the effects of a finite dissolution rate are to be
included in the model, a slightly different function F(S) is more
appropriate. As noted by Hixson and Crowell (1931) and Edwards
(1951),  the surface area of the undissolved drug is proportional to
the volume – and hence S to the power of 2/3 – provided that all
solid drug particles initially have the same size, and retain their
shape during the dissolution process. Thus, one can write

F(S) =
((

S

S0

)2/3

if S > 0,

0 if S < 0,
(37)
type has been used in a number of models (Ayres and Lindstrom,
1977; Lindstrom and Ayres, 1977; Frenning and Strømme, 2003;
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 driven by a concentration difference �C  across an idealised porous membrane
f  thickness L and cross-sectional area A. The effective diffusion coefficient Deff

ccounts for porosity ε and tortuosity �.

renning, 2003, 2004; Frenning et al., 2005; Blagoeva and Nedev,
008).

. Porous matrices

.1. Effective diffusion coefficients

The drug-release rate from porous matrix structures is to a
arge extent determined by the matrix porosity. Since the poros-
ty increases when drug dissolves, it is important to focuses on the
orosity ε of the fully extracted matrix, as noted already by Higuchi
1963). Provided that the porosity is large enough such that percola-
ion effects may  be disregarded (see below), it is generally possible
o describe diffusion through porous media with the normal dif-
usion equation (Eq. (10) for one-dimensional release), using an
ffective diffusion coefficient Deff.

Basically, there are two effects that contribute to a reduction
n the diffusion coefficient (Fig. 5). Firstly, since the drug cannot
ass through the solid phase of the matrix, the cross-sectional
rea available for diffusion is reduced by a factor of ε. Secondly,
ores channels tend not to be straight, and a drug molecule needs
o, on average, diffuse a longer distance when going through a
orous medium. The increased path length can be accounted for
y reducing the diffusion coefficient by a tortuosity factor �. Taking
oth effects into account, the effective diffusion coefficient is often
efined as (see, e.g., Cussler, 1997, p. 173)

eff = εD

�
(38)

here D is the diffusion coefficient of the dissolved drug in the
iquid contained in the pores. It is apparent from Fig. 5 that the
ux is obtained as the product of the effective diffusion coefficient
eff and the (negative) gradient of the average drug concentration

n the liquid contained in the pores. This definition is certainly the
ost suitable when diffusion occurs through a membrane, such as

n reservoir systems, but may  not necessarily be the most conve-

ient one for matrix systems. For a matrix system, it appears most
atural to define the initial drug loading (A0) as the ratio between
he amount of drug present in the matrix and the matrix volume
rather than as the ratio between the amount of drug and the pore
harmaceutics 418 (2011) 88– 99

volume), as performed by Higuchi (1963).  Similarly, it is natural to
calculate the concentration of dissolved drug as the ratio between
the amount of the dissolved drug and the matrix volume. Such a
procedure has two consequences. Firstly, the flux is obtained as
the product of a ‘reduced’ diffusion coefficient D′ and the negative
gradient of the average drug concentration in the matrix,  implying
that

D′ = D

�
. (39)

Secondly, a ‘reduced’ solubility C ′
s in the matrix can be introduced

as

C ′
s = εCs, (40)

where Cs is the drug solubility in the liquid within the pores.
Although definitions (39) and (40) are less standard than (38), they
are widely used in drug-release modelling. Their main advantage
is that they enable expressions derived for a non-porous matrix to
be immediately converted to the porous case, by substituting D′ for
D and C ′

s for Cs. As an example, the expressions derived by Higuchi
(1963) for the release from nonporous and porous matrices of pla-
nar and spherical geometries are related by these substitutions.
However, slightly different adjustments for matrix porosity have
sometimes been used (Miller and Peppas, 1983).

7.2. Percolation effects

In essence, percolation theory analyses clusters in lattices and
there are two main types of percolation: site and bond percolation
(Stauffer and Aharony, 1992; Sahimi, 1994). In site percolation, the
lattice sites (alternatively referred to as nodes or vertices) are ran-
domly occupied with a certain probability p and hence unoccupied
with probability 1 − p. Two  occupied neighbouring sites are consid-
ered to belong to the same cluster. Bond percolation focuses on the
connections between neighbouring sites, referred to as bonds, that
are randomly open with a certain probability p′ and closed with
probability 1 − p′ (transport can occur only through open bonds).
Two  neighbouring sites that are connected by an open bond belong
to the same cluster. Percolation theory can be used to answer ques-
tions related to cluster size and structure. Of critical importance
is the percolation threshold, i.e., the probability at which an infi-
nite (or percolating) cluster forms. For site and bond percolation
in a simple cubic lattice, the percolation thresholds are: pc = 0.3116
and p′

c = 0.2488, respectively (Stauffer and Aharony, 1992). Impli-
cations of percolation theory on diffusion in disordered system
have been discussed by Havlin and Ben-Avraham (1987) and a
brief overview of percolation theory in relation to pharmaceutical
science has been provided by Frenning and Alderborn (2009).

Percolation theory, introduced in pharmaceutical science by
Leuenberger et al. (1987),  has obvious implications for the release
from inert matrix systems. This is because a pore network span-
ning the matrix is needed for satisfactory release of the drug.
Typically, a site percolation model is used, with the porosity ε of
the fully extracted matrix considered as being equivalent to the
occupation probability p in the percolation model. The system-
atic study of percolation effects on drug release was initiated by
Bonny and Leuenberger (1991),  who  observed a lower percolation
threshold below which drug release was incomplete. In addition, an
upper threshold was observed, above which the matrix no longer
remained intact after drug release. Subsequent work in this field has
focused on aspects such as the fractal dimensions of pore networks
(Bonny and Leuenberger, 1993), particle size and drug/excipient

particle size ratio (Caraballo et al., 1996; Millán et al., 1998) and
three-dimensional release (Brohede et al., 2007).

Monte Carlo simulations can be used to study transport in pore
networks when they are idealised as (site) percolation models.
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uch analyses have been performed by Bunde et al. (1985) and
acheras and co-workers (Kosmidis et al., 2003a,b; Papadopoulou

t al., 2006). Percolation theory is also closely connected to pore-
etwork modelling, which can be considered as an extension of
ond-percolation models.

.3. Pore-network modelling

Pore-network modelling provides additional insights into diffu-
ional transport through porous media. It relates the pore structure
pore-size distribution, connectivity and porosity) to its transport-
ng capacity, which is typically expressed in terms of effective
iffusion coefficients (Burganos and Sotirchos, 1987; Sahimi, 1992;
ollewand and Gladden, 1992; Sahimi, 1995). The basic setup is the

ame as for the bond-percolation model described above, with open
r closed bonds connecting neighbouring sites in a lattice. However,
hereas all open bonds are considered equivalent in bond perco-

ation, pore-network modelling allows for a distribution in pores
izes. The analysis can for convenience be based on a regular lattice,
uch as the simple cubic lattice. This is because previous experi-
nce has shown that the choice of lattice has a minor influence on
he results, as long as the average connectivity Z is kept constant
Arbabi and Sahimi, 1991). If the number of nearest neighbours in
he lattice is N, the probability of having an open bond is calculated
s p′ = Z/N. Clearly, the connectivity cannot exceed the number of
earest neighbours, thus the use of the simple cubic lattice is lim-

ted to a maximum of 6 connections. The pore radii are typically
etermined from the pore-size distribution, under the assumption
hat all pores have the same length L (Sahimi, 1992). The length

 is finally adjusted so that the porosity of the network equals the
orosity of the matrix (attributing all volume to the pores and none
o their junctions, i.e., the nodes).

When the network is created, attention is directed towards
ransport through its open pores. Consider an open pore of radius rij
cross-sectional area aij = �r2

ij
) connecting two nodes i and j. If the

rug concentrations at these nodes are Ci and Cj, it immediately fol-
ows from Fick’s law (1) that the amount of drug transported from

 to j per unit time is

ij = −Daij

L
(Ci − Cj), (41)

here D is the diffusion coefficient of the drug in the liquid within
he pores. The assumption of zero nodal volumes necessitates that
o drug should accumulate at the nodes, implying that∑

 ∈ nn(i)

Iij = 0, (42)

here the sum extends over all nearest neighbours to node i. An
nalogy with resistor networks may  be useful at this point. Eq. (41)
as the same form as the classical Ohm’s law, with I corresponding
o the electrical current, C to the electrical potential and Daij/L to
he conductance (the reciprocal value of the corresponding resis-
ance). Similarly, Eq. (42) is analogous to Kirchhoff’s first law. Thus,
n the steady-state situation, pore network models are isomor-
hic with the classical resistor networks investigated by Kirkpatrick
1973).

Assigning concentrations to the nodes at two  opposite bound-
ries, a concentration gradient develops in one spatial direction.
hus, Eqs. (41) and (42) combine to form a linear equation sys-
em for the nodal concentrations Ci of all nodes in contact with

ither boundary. This equation system can be solved numerically,
nabling the flux through the pore network to be determined.
nowing the applied concentration gradient and the resulting flux,

he effective diffusion coefficient is readily obtained.
Fig. 6. Results obtained from pore-network modelling. Effective diffusion coeffi-
cient Deff as a function of the network connectivity Z.

It is also possible to investigate pore networks by analytical
methods, in particular, effective-medium theory, but the analy-
sis tends to be rather complex (Sahimi et al., 1983). However, if
all pores are monosized, one can use the methods described by
Kirkpatrick (1973).  The effective-medium approximation of the
effective diffusion coefficient becomes

Deff ≈ εD

12
(Z − 2),  (43)

when the analysis is based on the simple cubic lattice with N = 6
nearest neighbours. This prediction is compared to simulated data
in Fig. 6, assuming a matrix porosity ε of 30%, obtained using a
simple-cubic network of size 30 × 30 × 30 (in units of the pore
length L). Percolation behaviour is evident in Fig. 6, with a critical
connectivity Zc ≈ 1.5, which is in good agreement with percola-
tion theory (Zc = 6p′

c ≈ 1.49 for the simple cubic lattice). From
Fig. 6, it is apparent that the effective-medium approximation per-
forms poorly close to the percolation threshold, but provides a good
description of the simulated data once Z ≥ 3. Such crossovers from
percolation-type to effective-medium type behaviours are com-
monly encountered (Stauffer and Aharony, 1992; Sahimi, 1994).

8. Conclusions

Mathematical modelling of drug release from inert matrix sys-
tems has been reviewed, with the focus being directed towards
general principles rather than particular applications. It is claimed
that the overall drug release is the result of the combined effects of
processes occurring on many different length scales, consequently
drug release can be considered as a multiscale process. For inert
porous matrices, pore network modelling can provide effective dif-
fusion coefficients based on the pore structure (porosity, pore-size
distribution and connectivity) that subsequently can be used in
models of the overall release process. Although the effects of stag-
nant layers and finite volumes of release media have been briefly
discussed, this review has elaborated mostly upon solution pro-
cedures for systems in which sink conditions provide reasonable
approximations of reality. The most interesting situation occurs
when the initial drug loading exceeds the drug solubility in the
matrix. Here, our main message is that the Higuchi-type moving-
boundary descriptions continue to be one of the most valuable tools
for obtaining approximate analytical solutions, especially when

coupled with integral-balance methods. However, continuous-field
descriptions that utilise a continuously varying concentration of
solid drug are advantageous when applying numerical methods. It
is possible to derive a single diffusion-type equation with nonlin-
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ar source terms, amenable to being solved by standard numerical
ackages, regardless of the geometry of the matrix. In this manner,
rug release from matrices of arbitrary geometries can be deter-
ined without effort.
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